
Adrian Tate

Principal Engineer

Cray Inc.

NERSC User Group 2012

 Building blocks for writing scientific applications

 Historically – allowed the first forms of code re-use

 Later – became ways of running optimized code

 These days the complexity of the hardware is very high

 Cray PE insulates the user from that complexity

 Cray module environment

 CCE

 Performance tools

 Tuned MPI libraries (+PGAS)

 Optimized Scientific libraries

 Cray scientific libraries are designed to give maximum possible
performance from Cray systems with minimum effort

1. Network performance

 Optimize for network performance

 Overlap between communication and computation

 Use the best available low-level mechanism

 Use adaptive parallel algorithms

2. Node performance

 Highly tune BLAS etc at the low-level

3. Highly adaptive software

 Using auto-tuning and adpatation, give the user the known
best (or very good) codes at runtime

4. Productivity features

 Simpler interfaces into complex software

FFT

FFTW

CRAFFT

Sparse

Trilinos

PETSc

CASK

Dense

BLAS

LAPACK

ScaLAPACK

IRT

FFTW

fftw-2.1.5

fftw

PETSc

petsc-

Petsc-
complex

CASK
(petsc)

Trilinos

Trilinos
10.8.3.0

CASK
(trilinos)

LibSci

BLAS

LAPACK

ScaLAPACK

IRT

CRAFFT

 There are many libsci libraries on the systems

 One for each of
 Compiler (intel, cray, gnu, pgi)

 Single thread, multiple thread

 Target (istanbul, mc12, interlagos)

 Static and shared

 Naming schemes
 Before libsci 11.0 : libsci_target.a

 After libsci 11.0 : libsci_compiler.a

 Best way to use libsci is to ignore all of this

 Load the xtpe-module
 module load xtpe-mc12

 “ftn” and “cc” are the magic tools that will help
 Link appropriate libraries for your environment

 Add all the library paths and that you need

 module command (module --help)

 PrgEnv modules :

 Component modules

 Cray driver scripts ftn, cc, CC

TUNER/STUNER> module avail PrgEnv

PrgEnv-cray/3.1.35 PrgEnv-gnu/4.0.12A PrgEnv-pathscale/3.1.37G
PrgEnv-cray/3.1.37AA PrgEnv-gnu/4.0.26A PrgEnv-pathscale/3.1.49A
PrgEnv-cray/3.1.37C PrgEnv-gnu/4.0.36(default) PrgEnv-pathscale/3.1.61
PrgEnv-cray/3.1.37E PrgEnv-intel/3.1.35 PrgEnv-pathscale/4.0.12A
PrgEnv-cray/3.1.37G PrgEnv-intel/3.1.37AA PrgEnv-pathscale/4.0.26A
PrgEnv-cray/3.1.49A PrgEnv-intel/3.1.37C PrgEnv-pathscale/4.0.36(default)
PrgEnv-cray/3.1.61 PrgEnv-intel/3.1.37E PrgEnv-pgi/3.1.35
PrgEnv-cray/4.0.12A PrgEnv-intel/3.1.37G PrgEnv-pgi/3.1.37AA
PrgEnv-cray/4.0.26A PrgEnv-intel/3.1.49A PrgEnv-pgi/3.1.37C
PrgEnv-cray/4.0.36(default) PrgEnv-intel/3.1.61 PrgEnv-pgi/3.1.37E
PrgEnv-gnu/3.1.35 PrgEnv-intel/4.0.12A PrgEnv-pgi/3.1.37G
PrgEnv-gnu/3.1.37AA PrgEnv-intel/4.0.26A PrgEnv-pgi/3.1.49A
PrgEnv-gnu/3.1.37C PrgEnv-intel/4.0.36(default) PrgEnv-pgi/3.1.61
PrgEnv-gnu/3.1.37E PrgEnv-pathscale/3.1.35 PrgEnv-pgi/4.0.12A
PrgEnv-gnu/3.1.37G PrgEnv-pathscale/3.1.37AA PrgEnv-pgi/4.0.26A
PrgEnv-gnu/3.1.49A PrgEnv-pathscale/3.1.37C PrgEnv-pgi/4.0.36(default)
PrgEnv-gnu/3.1.61 PrgEnv-pathscale/3.1.37E

--- /opt/cray/modulefiles ---

xt-libsci/10.5.02 xt-libsci/11.0.04 xt-libsci/11.0.05.1
xt-libsci/11.0.03 xt-libsci/11.0.04.8 xt-libsci/11.0.05.2(default)

 Perhaps you want to link another library such as ACML

 This can be done. If the library is provided by Cray, then load
the module. The link will be performed with the libraries in the
correct order.

 If the library is not provided by Cray and has no module, add it
to the link line.

 Items you add to the explicit link will be in the correct place

 To get explicit BLAS from ACML but scalapack from libsci

 Load acml module. Explicit calls to BLAS in code resolve
from ACML

 BLAS calls from the scalapack code will be resolved from
libsci (no way around this with static libraries)

 I recommend adding options to the linker to make sure you
have the correct library loaded.

 -Wl adds a command to the linker from the driver

 You can ask for the linker to tell you where an object was
resolved from using the –y option.

 E.g. –Wl, -ydgemm_

Note : explicitly linking “-lsci” is bad! This won’t be found
from libsci 11+ (and means single core library for 10.x!)

.//main.o: reference to dgemm_

/opt/xt-libsci/11.0.05.2/cray/73/mc12/lib/libsci_cray_mp.a(dgemm.o):

definition of dgemm_

 Libsci includes standard BLAS1, 2, 3

 Most BLAS in libsci are highly tuned and threaded

 The emphasis is on the routines that are most important to
users – feedback always welcome

 There are single and multi-threaded libraries on the system

 The multi-thread library is linked by default

 The single-thread library is there for specialist use and
debugging – no real reason to try it

 Usage – just as standard BLAS

 LibSci is (now) compatible with OpenMP

 Control the number of threads to be used in your program
using OMP_NUM_THREADS

e.g. in job script

 setenv OMP_NUM_THREADS 16

 Then run with aprun –n1 –d16

 What behavior you get from the library depends on your code

1. No threading in code
 The BLAS call will use OMP_NUM_THREADS threads

2. Threaded code, outside parallel region
 The BLAS call will use OMP_NUM_THREADS threads

3. Threaded code, inside parallel region
 The BLAS call will use a single thread

0

5

10

15

20

25
1

0
0

3
0

0

5
0

0

7
0

0

9
0

0

1
1

0
0

1
3

0
0

1
5

0
0

1
7

0
0

1
9

0
0

2
1

0
0

2
3

0
0

2
5

0
0

2
7

0
0

2
9

0
0

3
1

0
0

3
3

0
0

3
5

0
0

3
7

0
0

3
9

0
0

G
FL

O
P

S

Matrix dimensions M=N=K

2threads

1 thread

0

100

200

300

400

500

600

700
1

0
0

3
0

0

5
0

0

7
0

0

9
0

0

1
1

0
0

1
3

0
0

1
5

0
0

1
7

0
0

1
9

0
0

2
1

0
0

2
3

0
0

2
5

0
0

2
7

0
0

2
9

0
0

3
1

0
0

3
3

0
0

3
5

0
0

3
7

0
0

3
9

0
0

G
FL

O
P

S

Matrix dimensions M=N=K

24 threads

20 threads

16 threads

12 threads

8threads

4threads

2threads

1 thread

14

0

20

40

60

80

100

120

140

1 2 4 8 12 16 20 24

G
FL

O
P

S

Number of threads

Libsci-10.5.2 performance on 2 x MC12 2.0 GHz
(Cray XE6)

K=64

K=128

K=200

K=228

K=256

K=300

K=400

K=500

K=600

K=700

K=800

0

1

2

3

4

5

6

7

8

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

28
00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

36
00

37
00

38
00

39
00

40
00

G
FL

O
P

S/
th

re
ad

Matrix dimension M=N=K

1thread

2threads

4threads

8threads

12threads

16threads

20threads

24 threads

 For ZGEMM only

 Complex matrix multiplication can be performed using real
matrix additions, for fewer flops

 You can turn on the 3M algorithm

 Set the environment variable

 ZGEMM_USE_3M=1

 Note : there is an accuracy trade-off, though this should be
safe most of the time

 We are preparing the release of an entirely new BLAS library

 This has been built in a completely different way

 using our autotunign framework

 By building an entirely adaptive interface into BLAS calls

 Using a new generalized formulation of BLAS

 The generalized BLAS code allows much greater performance
variation

 Explore all loop orderings

 Explore all threading options

 Explore all buffer combinations

 Change all block sizes and number of block levels.

 The idea is that you will receive the best of many many BLAS
kernel versions for your specific problem at runtime

 What this will give you

 Extremely good performance for

 Unusual problem sizes/shapes

 Better performance within solvers (who also have unusual)

 Much richer openMP support

 Multi-levels of parallelism

 User selects the inner-most thread number, or

 openMP run-time can decide how much to use

 BIT –reproducible threaded GEMM

M N K LibSci-

10.5.2
CrayBLAS

%improve

8 8 8 0.04 0.18 352.34%

80 80 80 3.81 5.50 44.26%

80 800 80 4.87 6.67 36.99%

8 8000 8 2.25 2.35 4.54%

800 800 80 5.88 6.61 12.28%

200 200 200 5.69 6.69 17.73%

200 2000 200 6.16 7.28 18.07%

1000 1000 256 6.89 7.27 5.54%

1000 200 200 6.60 6.83 3.54%

 Threaded LAPACK works exactly the same as threaded BLAS

 Anywhere LAPACK uses BLAS, those BLAS can be threaded

 Some LAPACK routines are threaded at the higher level

 No special instructions

0

10

20

30

40

50

60

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900 3100 3300 3500 3700 3900

G
FL

O
P

S/
s

Matrix dimension

1thread

2threads

4threads

8threads

16threads

24 threads

 Mixed precision can yield a big win on x86 machines.

 SSE (and AVX) units issue double the number of single precision operations
per cycle.

 On CPU, single precision is always 2x as fast as double

 Accelerators sometimes have a bigger ratio

 Cell – 10x

 Older NVIDIA cards – 7x

 New NVIDIA cards (2x)

 Newer AMD cards (> 2x)

 IRT is a suite of tools to help exploit single precision

 A library for direct solvers

 An automatic framework to use mixed precision under the covers

22

 Various tools for solves linear systems in mixed precision

 Obtaining solutions accurate to double precision
 For well conditioned problems

 Serial and Parallel versions of LU, Cholesky, and QR

 2 usage methods
 IRT Benchmark routines

 Uses IRT 'under-the-covers' without changing your code
 Simply set an environment variable
 Useful when you cannot alter source code

 Advanced IRT API
 If greater control of the iterative refinement process is required

 Allows
 condition number estimation
 error bounds return
 minimization of either forward or backward error
 'fall back' to full precision if the condition number is too high
 max number of iterations can be altered by users

23

Decide if you want to use advanced API or benchmark API

 benchmark API :
 setenv IRT_USE_SOLVERS 1

 advanced API :

1. locate the factor and solve in your code (LAPACK or ScaLAPACK)

2. Replace factor and solve with a call to IRT routine

 e.g. dgesv -> irt_lu_real_serial

 e.g. pzgesv -> irt_lu_complex_parallel

 e.g pzposv -> irt_po_complex_parallel

3. Set advanced arguments

 Forward error convergence for most accurate solution

 Condition number estimate

 “fall-back” to full precision if condition number too high

Note : “info” does not return zero when using IRT !!

24

0

2

4

6

8

10

12

14

16

18

20

300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900 3100 3300 3500 3700 3900

G
LF

O
P

S/
s

matrix dimension

IRT_USE_SOLVERS=1

normal

 Cray’s main FFT library is FFTW from MIT

 We work with the FFT developers to make sure that this is
optimized for Cray hardware

 We wrote the bulldozer version of FFTW for MIT

 Usage is simple

 Load the module

 In the code, call an FFTW plan

 Cray’s FFTW provides wisdom files for these systems

 You can use the wisdom files to skip the plan stage

 This can be a significant performance boost

 CRAFFT can be used for advanced controls of FFTW and better
parallel performance

 Serial CRAFFT is largely a productivity enhancer

 Also a performance boost due to “wisdom” usage

 Some FFT developers have problems such as
 Which library choice to use?

 How to use complicated interfaces (e.g., FFTW)

 Standard FFT practice
 Do a plan stage

 Do an execute

 CRAFFT is designed with simple-to-use interfaces
 Planning and execution stage can be combined into one

function call
 Underneath the interfaces, CRAFFT calls the appropriate

FFT kernel

27

1. Load module fftw/3.2.0 or higher.

2. Add a Fortran statement “use crafft”

3. call crafft_init()

4. Call crafft transform using none, some or all optional
arguments (as shown in red)

 In-place, implicit memory management :

call crafft_z2z3d(n1,n2,n3,input,ld_in,ld_in2,isign)

 in-place, explicit memory management

call crafft_z2z3d(n1,n2,n3,input,ld_in,ld_in2,isign,work)

 out-of-place, explicit memory management :

crafft_z2z3d(n1,n2,n3,input,ld_in,ld_in2,output,ld_out,ld_out2,isign,work)

Note : the user can also control the planning strategy of CRAFFT using the
CRAFFT_PLANNING environment variable and the do_exe optional argument,
please see the intro_crafft man page.

28

 Parallel CRAFFT is meant as a performance improvement to FFTW2 distributed
transforms

 Uses FFTW3 for the serial transform

 Uses ALLTOALL instead of ALLTOALLV where possible

 Overlaps the local transpose with the parallel communications

 Uses a more adaptive communication scheme based on input

 Lots of more advanced research in one-sided messaging and
active messages

 Can provide impressive performance improvements over FFTW2

 Currently implemented

 complex-complex

 Real-complex and complex-real

 3-d and 2-d

 In-place and out-of-place

 1 data distribution scheme but looking to support more (please tell us)

 C language support for serial and parallel

 Generic interfaces for C users (use C++ compiler to get these)
29

1. Add “use crafft” to Fortran code

2. Initialize CRAFFT using crafft_init

3. Assume MPI initialized and data distributed (see manpage)

4. Call crafft, e.g. (optional arguments in red)

 2-d complex-complex, in-place, internal mem management :

 call crafft_pz2z2d(n1,n2,input,isign,flag,comm)

 2-d complex-complex, in-place with no internal memory :

 call crafft_pz2z2d(n1,n2,input,isign,flag,comm,work)

 2-d complex-complex, out-of-place, internal mem manager :

 call crafft_pz2z2d(n1,n2,input,output,isign,flag,comm)

 2-d complex-complex, out-of-place, no internal memory :

 crafft_pz2z2d(n1,n2,input,output,isign,flag,comm,work)

Each routine above has manpage. Also see 3d equivalent :

 man crafft_pz2z3d
30

CRAFFT, plan=0
(=FFTW_ESTIMATE)

CRAFFT plan = 1
(=FFTW_MEASURE)

2d mpi fft, normal,
n=12288

FFTW out-place

r2c, Gflops 5.36 5.92 4.8 4.7

c2r, Gflops 4.14 5.02 4.8 5.14

 Sparse matrix operations in PETSc and Trilinos on Cray systems
are optimized via CASK

 CASK is a product developed at Cray using the
Cray Auto-tuning Framework (Cray ATF)

 Uses ATF auto-tuning, specialization and Adaptation concepts

 Offline :

 ATF program builds many thousands of sparse kernel

 Testing program defines matrix categories based on density, dimension
etc

 Each kernel variant is tested against each matrix class

 Performance table is built and adaptive library constructed

 Runtime

 Scan matrix at very low cost

 Map user’s calling sequence to nearest table match

 Assign best kernel to the calling sequence

 Optimized kernel used in iterative solver execution
32

Speedup on Parallel SpMV on 8 cores, 60 different matrices

1

1.1

1.2

1.3

1.4

0 10 20 30 40 50 60

Sp
e

e
d

-u
p

CASK + PETSc XT5 single node (60 matrices)

34

0

500

1000

1500

2000

M
Fl

o
p

s

Matrix Name

Trilinos + CASK on Instanbul, single node

 Tuned library for hybrid nodes of NVIDIA GPUs + AMD IL

 Simple interface

 Use the standard API for BLAS, LAPACK etc

 Libsci_acc does it all under the covers
 Manages and pins the host memory

 Allocates GPU resources

 Copies data to the GPU

 Performs the operation on GPU and on CPU

 Copies data back to the GPU

 Provides the following

 [s,d,z,c]GEMM

 [s,d,z,c]GETRF

 [s,d,z,c]POTRF

 March release

 LAPACK 3.4.0

 C interfaces for lapack

 CRAFFT CAF optimizations

 April release

 CrayBLAS1.0

 April release of libsci_acc

 Fully adaptive BLAS (GEMM)

 POTRF, DGESDD

